QC品质管理七大手法之散布图
日期:2017-05-31 / 人气: / 来源:www.biglss.com / 热门标签: 散布图
QC品质管理七大手法之散布图即是将因果关系所对应变化的数据分别描绘在X-Y轴坐标系上,以掌握两个变量之间是否相关及相关的程度如何,这种图形叫做“散布图”,也称为“相关图”。
散布图的分类:
① 正相关:当变量X增大时,另一个变量Y也增大;
② 负相关:当变量X增大时,另一个变量Y却减小;
③ 不相关:变量X(或Y)变化时,另一个变量并不改变;
④ 曲线相关:变量X开始增大时,Y也随着增大,但达到某一值后,则当X值增大时,Y反而减小。;
散布图的实施步骤:
① 确定要调查的两个变量,收集相关的最新数据,至少30组以上;
② 找出两个变量的最大值与最小值,将两个变量描入X轴与Y轴;
③ 将相应的两个变量,以点的形式标上坐标系;
④ 计入图名、制作者、制作时间等项目;
⑤ 判读散布图的相关性与相关程度。
散布图的应用要点及注意事项:
① 两组变量的对应数至少在30组以上,最好50组至100组,数据太少时,容易造成误判;
② 通常横坐标用来表示原因或自变量,纵坐标表示效果或因变量;
③ 由于数据的获得常常因为5M1E的变化,导致数据的相关性受到影响,在这种情况下需要对数据获得的条件进行层别,否则散布图不能真实地反映两个变量之间的关系;
④ 当有异常点出现时,应立即查找原因,而不能把异常点删除;
⑤ 当散布图的相关性与技术经验不符时,应进一步检讨是否有什么原因造成假象。
① 正相关:当变量X增大时,另一个变量Y也增大;
② 负相关:当变量X增大时,另一个变量Y却减小;
③ 不相关:变量X(或Y)变化时,另一个变量并不改变;
④ 曲线相关:变量X开始增大时,Y也随着增大,但达到某一值后,则当X值增大时,Y反而减小。;
散布图的实施步骤:
① 确定要调查的两个变量,收集相关的最新数据,至少30组以上;
② 找出两个变量的最大值与最小值,将两个变量描入X轴与Y轴;
③ 将相应的两个变量,以点的形式标上坐标系;
④ 计入图名、制作者、制作时间等项目;
⑤ 判读散布图的相关性与相关程度。
散布图的应用要点及注意事项:
① 两组变量的对应数至少在30组以上,最好50组至100组,数据太少时,容易造成误判;
② 通常横坐标用来表示原因或自变量,纵坐标表示效果或因变量;
③ 由于数据的获得常常因为5M1E的变化,导致数据的相关性受到影响,在这种情况下需要对数据获得的条件进行层别,否则散布图不能真实地反映两个变量之间的关系;
④ 当有异常点出现时,应立即查找原因,而不能把异常点删除;
⑤ 当散布图的相关性与技术经验不符时,应进一步检讨是否有什么原因造成假象。
作者:博革咨询